
Architecture of the 
Spectral Tools Platform 

(STOP) project

Ivan Zolotukhin
IRAP / UPS



Talk outline

• Scientific motivation

• Virtual Observatory

• Architecture & technology choice

• Project status



Scientific motivation

• Wealth of high quality 
radio telescopes data 
became available 
recently

• It is necessary to 
develop theoretical 
models and compare 
them with 
observations



Scientific motivation
• Modeling of 3D structures with diffuse 

interstellar medium, such as star-forming regions, 
protostar envelopes, jets, outflows, supernovae, 
novae

• Models in the order of increasing complexity: 

• LTE, local thermodynamic equilibrium 

• LVG, local velocity gradient

• Full radiative transfer



Scientific motivation

• LTE simple, LVG and full RT are not

• 2 particular line modeling codes of MICMAC 
interest: LVG_GRE (C. Ceccarelli) and LIME 
(Brinch & Hogerheijde)

• Complex to install, inconvenient to access, 
troublesome to maintain :)

• C / Fortran written by researchers = hard to 
interface with anything

• Computationally intensive (impossible to use on a 
workstation)



Project STOP

streamline comparison of 
observations with results of 
terrible, horrible, no good, very 

bad modeling codes 



STOP

• Project STOP: Spectral Tools Platform 
(collaboration with S. Bottinelli, J.-M. 
Glorian, E. Caux, D. Quénard)

• Legacy / heavy codes to model fluxes in 
Fortran / C: LIME and LVG_GRE



Virtual Observatory

• World-wide initiative to 
make all astronomical data 
homogeneous and accessible

• Being able to easily access γ-
to-radio data (tables, images, 
spectra) for each object

• Science ready data!





• It’s crucial that everyone 
talks same language 
(protocol)

• IVOA works out protocols 
and conducts the orchestra

• Most famous protocols are: 
ConeSearch, SIAP, SSAP, 
SAMP, TAP, UWS

Virtual Observatory



What’s UWS?

• UWS – Universal Worker Service, built to 
access asynchronous services by submitting 
long-running jobs (tasks)

• You say to a web service: start job with these 
params, stop job, fetch results

• Wrapping code into UWS cures most of the 
usage / maintenance problems

• Many client applications can now access it

• Dispatch jobs on a large cluster (e.g. SLURM)



Client 1

Client 2

Client 3

UWS server

Nasty code



Technologies

• Architecture: UWS server + client(s)

• Very useful rule: limit zoo of a project’s 
technologies, try to use the single one

• Client: python / Django

• Hence UWS server: python



Why python / Django?

• 2011: exoplanet.eu world’s reference 
exoplanet database

• 2012: vespa.obspm.fr virtual european solar 
and planetary access

• 2015: xmm-catalog.irap.omp.eu xmm-
newton catalog and photon database

http://exoplanet.eu/
http://exoplanet.eu/
http://vespa.obspm.fr/
http://vespa.obspm.fr/
http://xmm-catalog.irap.omp.eu/
http://xmm-catalog.irap.omp.eu/


UWS with DaCHS

• DaCHS: data center suite by M. Demleitner 
(GAVO)

• Very powerful solution (arbitrary binary 
wrap, arbitrary job input environment, 
arbitrary arguments through UWS, etc)

• Power of python embedded into q.rd – 
the only service configuration file

• VIP access to Markus



Need for special UWS 
client

• Complex input parameters

• File uploads

• Array / dictionary arguments

• Complex relationships between input 
arguments

•Cannot be handled by default / 
automatic client



Special UWS client

UWS client 
web app



Demo



Project status 
after 8 months (6 to go)

• UWS support in DaCHS ✔

• uws-client fixed ✔

• LVG: client and server ✔

• LIME: server ✔

• LVG finishing

• LIME client & result visualizer

• SLURM dispatcher



Message to take away

• Have long-running jobs and/or tired from 
legacy software: UWS is for you

• DaCHS: stable and mature, highly 
recommended for UWS and other VO data 
center tasks

• python + Django: very convenient for 
research applications, highly recommended



Thanks


